详细信息 |
文本生成:NLP重要任务标之一神经网络生成法为主流趋势 |
编辑: 来源:浙商证券 时间:2023/5/9 |
文本生成(Text Generation)是自然语言处理(NLP)的重要任务之一,从非语言的表示生成人类可以理解的文本,文本→文本、 数据→文本都是文本生成任务关注的 RNN架构局限在于无法并行运算。RNN计算是有时序依赖的,需要用到前一个时间步或者后一个时间步的信息,这导致它难 以并行计算,只能串行计算。GPU的并行化能够大大加速计算过程,如果模型不能够并行计算,会导致运算速度很低。 Transformer架构引入Self-attention自注意力机制可取代RNN。 2017年,Google发布《Attention is All You Need》Transformer模型通过采用Self-Attention 自注意力机制,完全抛弃了传统RNN在水平方向的传播,只在垂直方向上传播,只需要不断 叠加Self-Attention层即可。这样,每一层的计算都可以并行进行,可以使用GPU进行加速。
|
【声明:转载此文出于传递更多信息之目的,并不意味着赞同其观点或证实其描述,文章内容仅供参考,如有侵权,请联系删除。】 |
推荐信息 |
ChatGPT发展展望:纵向加深AI能力 横向拓展能力边界
hatGPT模型基于RLHF的预训练机制将进一步提升模型反馈的准确性和时效性,证明了AIGC应用落地的可行性与先进性,或将催生更多的应用需求
ChatGPT基于算力支撑实现交互革命有不少先进性
1 模型训练效率提高;2 训练模式更具通用性,经济效益增强;3 反馈准确性提升;4 可以拒绝用户的不适当请求;5 能够承认错误,挑战不正确的前提
基于RLHF的算法优化,助力GPT模型革新
通过奖励模型产生最优的输出结果后,将该结果对模型参数进行迭代与优化,到高质量的ChatGPT模型,构建的Codex模型上引入了推理能力
从AlphaGo到ChatGPT,AI技术发展叩响AGI之门
ChatGPT在文字创作与语言交互等方面的能力令人惊喜,一定程度上实现了人类同等能力,提升读写效率,实现AGI具有可能性,重塑AI发展前景
商业智能通过集成 GPT-4 能力增强分析
自动将用户输入的自然语言转化为查询 SQL;支持根据用户意图自动生成自定义的可视化结果;结合可视化的图表进行合理布局 自动生成可交付使用的书面报告
阿里全栈布局 AI 技术体系,形成 IaaS、PaaS 和 MaaS 三层架构
魔搭社区模型总数达 800+,MaaS 的核心是将模型作为生产的重要元素,有效支撑模型的生命周期,开发者能快速查找并使用模型,降低模型使用门槛
用户交互:ChatGPT智能客服机器人将替代人工
ChatGPT 可以通过与客户进行自然对话来了解他们的问题和需求,快速提供适当的解决方案,并在需要时将客户转接到人工客服以获得更进一步的支持
社媒营销:以GPT内容驱动营销工作自动化
ChatGPT能快速生成吸引人的,具有针对性的营销文案,降低了人力成本,还能轻松应对多种场景和需求,还可以为文案注入新鲜元素提高文案的吸引力 |
智能运输机器人 |
AGV无人运输机器人-料箱版 |
AGV无人运输机器人-标准版 |
AGV无人运输机器人-料箱版(钣金材质) |
AGV无人运输机器人-货架版(钣金材质) |
AGV无人运输机器人-货架版(亮面不锈钢材质) |
AGV无人运输机器人-开放版 |
行业动态 |
咨询热线:4006-935-088 / 4006-937-088
客服热线:
4008-128-728
版权所有 @ 创泽智能机器人集团股份有限公司 鲁ICP备18039973号-2 运营中心 / 北京·清华科技园九号楼 生产中心 / 山东省日照市开发区太原路71号 |